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Abstract

We present an open framework to benchmark crater
detection algorithms, based on infrared images of
the Mars surface acquired from the THEMIS sur-
vey and a recently revised catalogue of all Martian
craters with a diameter larger than 1 km, representing
∼400 000 entities. Within this framework, we clearly
define the problem and the model evaluation (i.e. data
sets, metrics, and cross-validation). This framework is
embedded in the Rapid Analytics and Model Prototyp-
ing (RAMP) computing platform which aims at pro-
viding a fair comparison of present and future meth-
ods. The platform has been deployed during a beta
event to show a proof-of-concept.

1. Introduction
Impact craters are one of the most prominent geo-
logical features of telluric planets, yielding impor-
tant information on their geological history [1]. Al-
though any human with a short training can detect
craters in an image, automating such process remains
an open challenge. Consequently, crater detection al-
gorithms have received a particular attention in recent
years [2, 3, 4, 5, 1, 6]. As recently pointed out by Pe-
drosa et al. [7], it remains, however, difficult to make a
fair comparison between those methods: the data sets
and the metrics differ between studies.

To our knowledge, only Salamunićcar et al. [8] has
proposed a framework addressing those issues. How-
ever, this framework, now a decade old, uses an out-
dated ground-truth catalogue, lacks standard metrics
for object detection, and reproducing the evaluation is
not easy. Herein, we propose an open framework in-
tegrated within a computing platform allowing for fair
and reproducible comparison between crater detection
methods.

2. Evaluation framework
In this regard, we define a common data set based
on the full Martian surface, using the latest available
crater catalogue as ground-truth as presented. We also
define a testing methodology and metrics to compare
the algorithms.

2.1. THEMIS data
We used THEMIS [10] day-time infrared image, a
huge mosaic of the full Mars surface at 100m/pixel
in cylindrical projection as the main dataset. We pro-
cessed the THEMIS mosaic, one quadrangle at a time.
Each quadrangle was first reprojected to their local
stereographic projection. From these quadrangles im-
ages, we extracted all possible 224 px × 224 px im-
ages - hereafter referred to as tiles - using an overlap
of 56 px, to make sure each crater would fit entirely in
one tile at least. We also down-sampled the quadrangle
images to cut additional tiles, using identical method-
ology, to include the craters too big to fit in a tile of the
original image resolution.

2.2. Ground-truth catalogue
The ground-truth catalogue used for this benchmark is
currently the most accurate database of Martian craters
with a diameter larger than 1 km [9]. The catalogue is
based on the work of Robbins et al. [11], cleaned up
by human-operation [9]. It contains 376,439 verified
impact structures larger than 1 km in diameter.

2.3. Testing methodology
The tiles dataset created is large enough to be split into
independent training and testing sets. We selected tiles
from the most heterogeneous quadrangles (position,
crater population, etc.) to maximize the characteris-
tics of the data while keeping a manageable volume.
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Cross-validation was applied to the training data, us-
ing the quadrangles as folds. We used the hold-out
testing data to perform the evaluation as well as checks
for consistency with cross-validation scores.

2.4. Performance measures
A classic metric in object detection, the Intersection-
over-Union (IoU), also known as the Jaccard in-
dex [12], is used as a similarity criterion between two
objects that provides a good evaluation of both the lo-
cation and size accuracy of a given prediction with re-
spect to a crater.

As the final detection score, we compute the av-
erage precision, a performance metric based on the
precision-recall curve. This metric aims at penaliz-
ing algorithms that lack of balance between precision
(good predictions) and recall (completeness of the pre-
dictions).

3. Benchmark platform (RAMP)
The testing methodology presented in the previous
section has been implemented within the Rapid Ana-
lytics and Model Prototyping (RAMP) platform1. The
RAMP platform aims at the development of open
source, collaborative, and reproducible solutions.

Concretely, the problem has been formulated as a
detection problem in which the center and the radius
of each crater has to be predicted. The dataset has
been pre-processed and the evaluation has been fixed
following the testing methodology. Therefore, the
contributors willing to benchmark their algorithm are
just required to provide the source code of the detec-
tor with predefined input and output format. Subse-
quently, each algorithm is tested on Amazon S3 on
hardware with identical specification, ensuring consis-
tency. All data and code described in this document
are available online 2.

4. Preliminary results and conclu-
sions

An initial version of this benchmark platform was used
during a data science course at École Polytechnique
(Palaiseau, France) in November 2017. Algorithms
both using computer vision and deep learning meth-
ods were implemented. A next edition will occur at
the end of July 2018 at the CIFAR summer school3

1https://ramp.studio
2https://github.com/ramp-kits/mars-craters
3https://dlrlsummerschool.ca

in Toronto, Canada ; and a dedicated edition could be
organized for the conference.
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Abstract

Despite the number of confirmed exoplanets cur-
rently exceeds 3500, for only few hundreds of them
both mass and radius have been determined (e.g.,
https://exoplanetarchive.ipac.caltech.edu). For these
objects the mean density can be calculated to obtain
a first handle on the interior structure. However, in-
ferring the interior structure from just mass and ra-
dius is a highly non-unique problem (e.g., [1]). The
forthcoming space-based telescopes TESS, CHEOPS,
and PLATO will provide accurate determination of the
radii of thousands of exoplanets (e.g., [2]). These
improved instrumental capabilities along with the in-
creasing temporal baseline of exoplanetary orbits’ ob-
servations may also allow the inference of the fluid
Love number k2 (e.g., [3]), a parameter that depends
on the concentration of matter in the interior and is
akin to the moment of inertia (e.g., [4]). Exoplanetary
masses will be determined through follow-up cam-
paigns using ground-based telescopes. In the best case
scenario, three constraints–mass, radius, and k2–will
be available to investigate the interior structure of ex-
oplanets.

The goal of this work is to understand whether from
the determination of the radius and k2 only, it will
possible to classify an exoplanet–e.g., earth-like ver-
sus neptune-like–and if any bounds on its mass can
be placed in advance of follow-up campaigns that will
determine its mass from radial velocity. We test this
hypothesis using a neural network approach. We build
a large (in excess of 105) set of interior structure mod-
els in the mass range between 1 and 20 earth masses,
where the super-Earth and mini-Neptune classes over-
lap. The parameters entering the model (i.e., total
mass, core mass fraction, silicate reference densities,
water/ice mass fraction, etc.) represent the inputs for
the forward model, while the resulting radius and k2

represent the outputs. Since the forward problem is
only mildly non-linear, we will use neural network ar-

chitectures with one or two hidden layers with three to
five neurons each. We will adopt the common train-
ing, validation, and test split of the data (in proportion
80:10:10).

If this approach at planets’ classification proves suc-
cessful, it will be possible to rapidly draw prelimi-
nary inferences on an exoplanet’s interior in advance
of mass determinations from follow-up radial velocity
campaigns.
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1. Abstract 
The surface of Mercury has been mapped in the 400–
1145 nm wavelength range by the Mercury 
Atmospheric and Surface Composition Spectrometer 
(MASCS) instrument during orbital observations by 
the MErcury Surface, Space ENvironment, 
GEochemistry, and Ranging (MESSENGER) 
spacecraft. Under the hypothesis that surface 
compositional information can be efficiently derived 
from spectral reflectance measurements with the use 
of statistical techniques, we have conducted 
unsupervised hierarchical clustering analyses to 
identify and characterize spectral units from MASCS 
observations. The results display a dichotomy, with 
two spectrally distinct groups: polar and equatorial 
units (see Fig. 1). The spatial extent of the polar unit 
in the northern hemisphere generally correlates well 
with that of the northern volcanic plains [1]. We 
extended our analysis on the latest MESENGER data 
delivery to PDS including the new spectral 
photometric correction ([2] in review, extension of 
[3]) , finding result consistent with our previous 
analysis based on our custom photometric effect 
removal.  

2. Methods 

2.1 Data managing: PostgreSQL 

The most recent version of our data analysis 
procedure uses PostgreSQL, a type of database 
management that controls the creation, integrity, 
maintenance and use of a database. It embeds a high-
level query language, which greatly simplifies 
database organization as well as retrieval and 
presentation of database information. We set up a data 
pipeline using the to update automatically the 
MASCS data, read them from the NASA Planetary 
Data System format, regrid the data to a common grid 
length, and store all information in the database. All 

data are then readily available to any authorized user 
in our network. We are working on a library to access 
the data directly from within our analysis software, 
and some preliminary functions have been 
implemented. As an example, the calculation of a 
parameter representing the database takes a few 
seconds even for the full dataset of ~5 million entries, 
if exploiting pre-indexed columns. It is thus 
straightforward to create and analyze rapidly the data, 
as for example the distribution of normalized radiance 
at a fixed wavelength. The new methodology 
provides facilities for controlling data access, 
enforcing data integrity, managing concurrency 
control, and recovering the database after a failure 
and restoring it from backup files, as well as 
maintaining database security. 

2.1 Data retrieval : PostGIS 

We use PostGIS that adds support for geographic 
objects in geographic information system and extends 
the database language with functions to create and 
manipulate geographic objects. A typical application 
is the definition of a large number of regions of 
interest (ROIs) and the search for all data points 
falling within each ROI. This facility may be used to 
extract spectral signatures specific to user-defined 
geological units in a few seconds and to explore the 
properties of the data from the different ROIs. A 
typical search for data from areas defined by a simple 
ROI, such as regions of impact melt associated with a 
given crater, takes less than 1 second. More 
elaborated query requires more computational power 
and result in longer response time. A typical example 
is the search for a MASCS measurement where no 
point outside a ROI were taken, that could increase 
the response time to > 60 seconds.  We resample the 
whole dataset of ~5 Milion spectra on a planetary 
fixed grid or extract the information from collection 
of planetary region of interest in few minutes, 
allowing to quickly analyze the spectral characteristic 
of Mercury. We successfully tested remote access to 
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the database using through a GIS visualization system, 
creating data visualization on the surface of Mercury 
that layers camera data and real-time-queried 
MASCS data. 

2.1 Machine Learning on multivariate 
data 

We use a global hyperspectral data cube image of 
normalized MASCS visible (VIS) detector spectra, 
from the first Earth year of the orbital mission, to 
perform our unsupervised hierarchical clustering 
analysis. We reduced the grid resolution to 4°/pixel to 
improve the spatial coverage of the final map, but at 
the cost of increased sub-pixel variation. Data 
coverage varies from region to region, but global 
maps at 1°/pixel can be obtained with a high signal-
to-noise ratio (SNR). With the absence of a formal 
global photometric correction for the MASCS data, 
we have corrected the dataset in an approximate 
fashion by normalizing all the spectra at 700 nm to 
account for large variations in observing geometry. 
We have excluded the most extreme observing 
geometries by limiting the incidence and emission 
angles to <85°, which means that latitudes poleward 
of 80° are excluded. For this analysis we used six 
spectral channels, each with a bandwidth of 10 nm, in 
order to focus on “interesting” spectral regions, e.g., 
bands at ~600 nm that are indicative of sulfides. By 
using wider spectral channels, we also avoided biases 
caused by artifacts in the spectra, e.g., the presence of 

solar lines in the calibrated spectra. The resultant 
hyperspectral map was then visually inspected to 
search for anomalies that originated mainly in regions 
of low coverage or from high levels of spectral 
variation within a single pixel. Our approach consist 

of 1. a data cleaning step, to remove data artifact, 2. 
Principal Component Analysis (PCA) feature 
compression and 3. K-means clustering (see scikit-
learn python implementation in [4]). We  found the 
existence of two large and spectrally distinct regions, 
which we call the polar spectral unit (PSU) and the 
equatorial spectral unit (ESU) (Fig. 1). Further 
analysis indicates the presence of smaller sub-units 
that lie near the boundaries of these large regions and 
may be transitional areas of intermediate spectral 
character. 

References 
[1] Head, J. W. et al. (2011), Science, 333, 1853–1856.  

[2]  Domingue, D. L. et al, Icarus, in review. 

[3] Domingue, D. L. et al, Icarus, 209, 2010, 101-124. 

[4] Pedregosa, F., Journal of Machine Learning Research, 
2013, 108-122 

 
Figure 1. Spatial distribution of the unsupervised hierarchical clusters derived from normalized MASCS VIS spectra 
(overlaid on an MDIS base map). Red pixels indicate the polar spectral unit (PSU); blue pixels denote the equatorial 
spectral unit (ESU). Green is the intermediate transition region. 
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Abstract 

We propose a deep learning-based method to detect 

changes over the Martian surface, with a focus on the 

South Polar region. The method works by defining 

most of the images as “normal” and “anomalies” as 

candidates for changes. 

1. Introduction 

Although far from the Earth's surface, the Martian 

surface is not static. Some examples of changes are 

new impact craters, dust devil tracks, or dark slope 

streaks. With more than 40 years of orbital 

observations <100m, the amount of data available on 

Mars is enormous and too large to find changes 

manually. Because of this, we believe an automatic 

method will be useful for scientists to detect changes 

with a very large number of images. 

Automatically detecting changes, especially over the 

polar region is a difficult problem if not done correct, 

as transient features and on-off changes are mixed 

with changes caused by seasons, one of which is the 

annual cycle of growth and recession of the polar cap, 

resulting in high number of false positive observations. 

Previously, Sidiropoulos and Muller [1] have 

developed a change detection algorithm that has 

successfully been tested with global Martian data. 

Their method was successfully trained on non-polar 

images and obtained reasonable results globally, 

although the method is far from perfect for the polar 

regions. Improvements can be made with more 

observed changes as training data, which we currently 

lack for Martian images.  

2. Methods 

To address the absence of reliable training data and to 

utilise the stack of overlapping data available, 

especially around the poles, we propose a deep-

learning based method to detect anomalies on Martian 

images. One of the problems in creating a method 

based on deep learning is the computation and the 

amount of training samples needed to train the weights 

of the neurons in the network. Transfer learning is a 

method in machine learning in which networks which 

have been successfully trained to solve a specific 

problem are used to solve other similar problems. 

In this research we started with AlexNet [2] 

Convolutional Neural Network (convnet). AlexNet 

has been trained to classify 1.2million ImageNet data 

and has been successfully used in planetary science 

research to classify features on HiRISE images, also 

by transfer learning [3]. In transfer learning for 

AlexNet, we take out the Fully Connected Network 

(FCN) Layers which works as an image classifier and 

replace them with a specific goal in mind. 

In this research we are working with the assumption 

that most of the images don’t change, and can act as 

“normal” data, while changes if they exist, are 

“anomalies”.  In this way, changes caused by “normal” 

processes, such as the appearance/ disappearance of 

ice cap or changes caused by differences in imaging 

condition are not picked up. To replace the FCN layers 

we used a OneClassSVM to detect “anomalies” from 

the other “normal” data. 

We have isolated more than 20 regions with more than 

30 overlapping ortho-rectified and coregistered 

(ACRO) [4] images over the south polar region [5], 

with most of them obtained from the Context Camera 

(CTX) as regions of interest. As inputs we use images 

co-registered and orthorectified to Digital Terrain 

Models from HRSC [6] scaled to neural network 

inputs. We randomly sampled 2.5km x 2.5km area 

with 100m overlap between samples, resized to input 

sizes required by AlexNet (227x227x3) instead of 

resizing pixel sizes to neural network inputs to ensure 

that the scales are similar between multi-instrument 

input images. This decision is made to increase the 

success rate for anomaly detection for multi-

instrument image inputs. 
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 Random image samples from the same region are 

used to define “normal” data for semi-unsupervised 

classifier. Distance obtained from OneClassSVM for 

testing data from the “normal” data are calculated and 

sorted. Carrying the assumption that most data are 

“normal” data, anomalies are then separated from 

normal data by adaptive binary thresholding to divide 

images into “normal” images and “anomalies”. 

3. Results 

We tested the method on several areas (areas 

overlapping B06_012028_0930_XN_87S273W and 

B02_010344_0985_XN_81S063W) from our regions 

of interest. Figure (1left) shows an example of an area 

which have been classified as “normal” by our 

network, with (1right) showing the same area in 

different date. 

  

Figure 1(left) An example of detected “normal” data 

(P06_003206_0946_XI_85S277W, LS 212.06, MY 

28) with 1(right) (P06_003562_0946_XI_85S276W, 

LS 229.25, MY 28) similar area in other image with 

different imaging condition 

  

Figure 2(left) An example of detected “anomalies” 

data (P06_003206_0946_XI_85S277W, LS 212.06, 

MY 28) with 2(right) 

(P05_003074_0946_XI_85S277W, LS 205.81, MY 

28) a similar area in another image 

Figure (2) show an example of an area classified by 

our network as an “anomaly”, showing new seasonal 

fans appearing over the area. 

4. Conclusions and Future Work 

In this paper we have shown the potential of a semi-

supervised deep learning method to do change 

detection research on Martian polar images by 

detecting anomalies over a region while ignoring 

expected appearance changes. 

Currently we have only tested the method over 

specific areas out of our region of interest and only 

used ORIs and DTMs data from CTX. We are 

planning to test the method over the entire regions of 

interest for the south polar region.  There are other data 

from different instruments (from MOC-NA until 

HiRISE) available to widen the dataset. Increase in 

accuracy and reduction of false positives can be 

obtained by building a more representative 

architecture for planetary/ Martian data as well as 

utilising available but yet unused information 

particular to Martian or polar data.   
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Abstract

We present a novel approach of analysing – visual-
ising time series of a geophysical variable and we
characterise its abrupt transitions in comparison to
benchmark time series produced with model dynam-
ical systems: a mathematical model (stochastic res-
onance) and a climate model of intermediate com-
plexity (2D meridional ocean circulation with an at-
mospheric forcing) [1]. The method combines a ge-
netic segmentation algorithm that uses ordinal regres-
sion and clusters the different segments of the time
series around centroids located in a six-dimensional
(6D) space of statistical metrics. After detecting sta-
tistical similarities it helps compare the type of transi-
tion observed in the time series to three separate stud-
ied types: a) noise transition, b) subcritical bifurcation
crossing and c) transition to a limit cycle. The pro-
posed method complements the causality analysis of a
record of abrupt transitions in a geophysical system.

1. Introduction
The flexibility of the algorithms available in the ma-
chine learning range of methods should be combined
with comprehensive physical systems in order to elu-
cidate the exploration of a novel system. Here, we
present a work [2] that uses the bio-inspired method
of evolutionary algorithms in order to detect early
warning signals (EWS) of an abrupt transition (tipping
point) that is recorded in a geological time series. Sta-
tistical metrics have been used in the past [3] in or-
der to detect EWS which we here extend to include:
mean value, autocorrelation, standard deviation, kyr-
tosis, skewness and slope. An evolutionary algorithm
is used to efficiently investigate this broad phase space.
Prior knowledge of the Dansgaard-Oesger (DO) [4]
transition points is not inserted into the algorithm.

2. Methods
Figure 1 shows an example “chromosome” for a sam-
ple data series. Six statistical metrics are calculated for
each of the segments. The algorithm runs probabilisti-
cally, which means that it has random initialization of
the segmentation and converges to a different segmen-
tation pattern after each iteration until 5 clusters are
formed in the 6D space. The results are given in per-
centage of encounter coherence over the total number
of runs. If a segmentation pattern is encountered in all
the runs, we assess that the detection of tipping point
is 100% certain.

Figure 1: Chromosome representation of a sample
time series composed of 22 data points. (a) Exam-
ple chromosome. Each index corresponds to a posi-
tion in the time series. (b) Segments that correspond
to the chromosome. (c) The resulting segmentation of
the time series. We obtain statistical characteristics for
every segment. Image adopted with permission from
[2].
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3. Summary
The geophysical time series studied with this method
are the ice cores NGRIP and GISP3 oxygen isotope
data sets for the period spanning 50,000 yr before
present (BP) until today. As a preliminary result, it
is suggested that the DO events do not share the same
classification and could be potentially attributed to dif-
ferent underlying dynamics. Further work has been
conducted [5] in order to define a decision tree for the
classification of the tipping points.
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Abstract 
The presentation will outline various approaches in 

machine learning and content based search 

investigated by members of the former IMPEx-FP7 

(http://impex-fp7.oeaw.ac.at/)  project consortium, in 

close cooperation with partners Know-Center, Graz 

University of Technology, and University of Passau 

and discuss some of the numerous possibilities that 

open up, using these or equivalent techniques in the 

emerging field of e-Science in conjunction with 

space science. In particular, the presentation will 

focus on applications that allow systems to 

automatically classify and pre-select scientific data 
and hence speed up scientific workflows significantly 

by supporting scientists with the cumbersome task of 

going through vast amounts of data manually, looking 

for specific patterns, signals and phenomena of 

interest prior to selecting specific data for closer 

examination and analysis. 

Introduction 
Due to extensive research in the field of information 

retrieval, search technologies are commonplace today 

and their algorithmic underpinnings are well 

understood and proven to scale up to massive amounts 

of data. While the capability to do complex searches 

for specific signals and phenomena would come in 

quite handy when analyzing heterogeneous scientific 

data, such methods are mostly limited to textual 

searches and thus will not (directly) apply to cases 

where the data at hand is time series from sensory data. 

This is the case for e.g. observational space data or 

data derived from simulations of various physical 

processes. In such instances the handling and 

processing of the data needs to be adapted first and the 

search paradigm needs to be redefined, since the actual 

search cannot directly be initiated by key terms 

entered by the user. 

Powerful Tools for Science 

A promising solution investigated by the team is a 

technique known as query by example or content-

based search in the information retrieval community. 

Data is first transformed into a representation suitable 

to be managed using an inverted index by adopting 

and extending symbolic representation techniques 

which are designed to transform continuous data 

(discrete in the time domain) into a discrete or 

quantized representation, while keeping the associated 

information loss minimal (also see wavelet analysis). 

Further approaches from the field of unsupervised 

machine learning can then be applied to obtain 

temporal patterns of interest and identify a trade-off 

between frequent and surprising patterns. However, 

due to the unsupervised nature of the used techniques, 

the discovered patterns will not be tailored towards 

specific cases of scientific interest. In order to further 

limit the identified patterns to a set of candidates that 

are relevant in the context of specific questions in the 

realm of space science, techniques from the field of 

supervised machine learning can be established, 

using a procedure where human annotators provide 

labelled examples as references. Using these 

information retrieval and machine learning (as well as 

deep learning) methods a system can be built that 

automatically searches for specific phenomena in 

large quantities of (observational) data and most 

importantly also performs automatic classification of 

scientific data. 

Content Based Search and Automatic 

Classification 

Following a brief depiction of an example workflow 

for a simple application of the techniques outlined 

above, where a specific signal of interest is selected 

and then used as input for a comprehensive content 

based search. As a first step the user selects a portion 

of the time series data - a graphical interface allowing 

visual selection (and annotation) of patterns of interest 

is shown in Figure 1. 
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Figure 1: The user provides a signal by manually selecting 
a small portion of data 

In this step the user could also provide detailed 

annotations that specify the signal and allow further 

enhancing the search capabilities. The system then 

responds with a ranked list of search results, i.e. 

signals in the investigated data that resemble the 

example given above with descending similarity. It 

should be noted here that the search technology used, 

scales up to hundreds of Gigabytes of data and beyond. 

See Figure 2Error! Reference source not found. for 

an example of a possible response generated by the 

system, given the input selected (Figure 1). 

 

 

Figure 2: The ranked list of signal search results 

The first response in particular shows almost identical 

characteristics as the input signal and is likely to 

originate from a similar physical environment.  

 

Summary and Conclusions 

With new missions leveraging up-to-data capabilities 

in telematics and thus producing ever increasing 

amounts of observational data, content based search, 

machine learning and related technologies can 

provide a powerful toolset to enhance data analysis 

and data driven investigations of any kind. Many time 

consuming tasks can already be sped up and in many 

instances improved by leveraging current approaches 

in machine learning and artificial intelligence. Now is 

the time to start building prototype tools and to 

carefully analyze scientific workflows in order to 

gather detailed and relevant requirements for the e-

Science tools of the future. In this regard, it is crucial 

that experts in IT and machine learning are closely 

cooperating with (space) scientists, in order to gain a 

deep understanding of the problems at hand and to be 

able to build powerful solutions that will optimally 

support space science in the 21st century. 
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Abstract
In this fortuitous time in space exploration, by having
multiple mission collecting a plethora of observations
of terrestrial atmospheres we are burdened with the
difficult task of extracting useful interpretations of the
results. In this work we focus on column/number den-
sities from spectral retrievals of Mars, and wish to find
trends due the geography (i.e. Latitude, Longitude, Ls,
local time, altitude, surface height) and external fac-
tors (i.e. solar activity), as well as correlation between
the species. Considering the number of variables and
large sample size, this problem is well suited for clas-
sification via machine learning. To explore the pos-
sible methods, we construct a simulated collection of
retrievals using realistic orbit and observation param-
eters, along with interpolated profiles from the GEM-
Mars GCM. We compare the different machine learn-
ing methods by their performance and their effective-
ness in gaining insight into the trends and correlation.

1. Introduction
GEM-Mars is a General Circulation Model for the at-
mosphere of Mars with online atmospheric chemistry.
The model is operated on a grid with a horizontal res-
olution of 4°x4° and with 103 vertical levels reach-
ing from the surface to ~150 km. It calculates at-
mospheric heating and cooling rates by solar and IR
radiation through atmospheric CO and dust and ice
particles and solves the primitive equations of atmo-
spheric dynamics. Geophysical boundary conditions
are taken from observations. Physical parameteriza-
tions in the model include an interactive condensa-
tion/surface pressure cycle, a fully interactive water
cycle including cloud radiative feedbacks, a thermal
soil model including subsurface ice, interactive dust
lifting schemes for saltation and dust devils, turbulent
transport in the atmospheric surface layer and con-
vective transport inside the planetary boundary layer
(PBL), subgrid scale vertical mixing in the free tro-
posphere, a low level blocking scheme, gravity wave

drag, molecular diffusion, non-condensable gas en-
richment, and atmospheric chemistry. A detailed de-
scription of the model, its formulation, grid, dynamical
core and physical parameterizations, together with ex-
tensive validation against multiple datasets, was given
in [1], and further details can be found in [2, 3, 4].

Figure 1: Simulated column densities for H2O and O3
from the GEM-Mars GCM (Ls=0, LST=15h).

In Figure 1, we present column densities for water
and ozone from the GEM-Mars GCM that have been
interpolated onto a high-resolution global grid. These
images suggest an anti-correlation between water and
ozone, which can be attributed to the chemistry mod-
ule included in the GCM. We intend to classify this
and other trends in the data using the techniques of
Machine Learning.
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2. Machine Learning Application
The variables in our data set include the geographic
knowledge of the observation, possibly values for the
solar activity, and column densities for one or many
molecules and aerosols. Different observations neces-
sarily include a small subset of the molecules in the
Martian atmosphere (due to the order selection and
sensitivity of the measurements), so our data set will
have sparse coverage of the dependent variables.

To make use of most Machine Learning techniques,
we first must normalize the data [5] (e.g. column den-
sities). Due to the varied relative abundances of the
species, we likely will need a per species normaliza-
tion. We may also want to introduce additional fea-
tures derived from the geographic variables that can
sensibly be used along with our data (e.g. use Mars’
orbital distance to adapt to solar insolation, or use sur-
face height to adapt to large changes in surface pres-
sure).

Next, we will explore the set of methods available in
Scikit-learn [6, 7], a Python implementation of many
machine learning algorithms. We will apply clustering
on the data to search for clear separation in our dataset,
and iteratively selecting new features derived from the
dependent variable. Additionally, we will evaluate the
effectiveness of support vector machines and principle
component analysis in classifying the data, as well as
the automated feature selection techniques available in
Scikit-learn.

3. Summary and Conclusions
From previous, current and future spacecraft mission,
we have an enormous supply of data which we would
like to classify and search for trends and interesting
features. We can then focus on these feature to see if
they are supported by models or can highlight impor-
tant physical processes. In this work, we create a sim-
ulated data set of spacecraft retrievals using the GEM-
Mars GCM to determine the usefulness of Machine
Learning for this purpose, and gain insight before ap-
plying the techniques to future data sets.
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Abstract 

Small (sub-km) crater size-frequency distributions are 

the standard metric for dating very young surfaces on 

the Martian surface, because of the lack of large, 

infrequent impact events and the unavailability of 

surface samples. However, small crater population 

statistics are poorly understood and make accurate 

absolute dating of young surfaces impossible. This is 

because several unknown factors  which affect the 

crater production and erosion rates – such as 

atmospheric filtering, secondary cratering and partial 

resurfacing [1]. Constraining these factors, where 

possible, is important if we are to understand the 

recent history of the Martian surface. We present an 

algorithm capable of detecting small crater candidates 

in high-resolution visible imagery of the Martian 

surface. The algorithm classifies craters with a state-

of-the-art F1-score (91%) when compared with other 

algorithms on the same dataset [2-4]. We use this 

alongside a mean-shift clustering algorithm to detect 

crater candidates in an extended HRSC image with 

near 100% recall and roughly 50% precision. The 

candidates can then be marked rapidly by a human 

expert, greatly increasing the speed of small crater 

counting exercises, when compared to traditional 

manual marking. The detection algorithm’s 

performance is shown in both familiar (relative to the 

training set) and unfamiliar terrain, which we believe 

demonstrates that it is a viable tool for accurate and 

quick crater counting on Mars. 

1. Introduction 

Historically, CSFD's have been constructed manually 

by human experts [5]. We believe this is primarily due 

to two reasons: 1) human experts are thought to be the 

most accurate crater detector, given that we have no 

higher authority by which to check our answers; 2) 

Large craters have been shown to be of far more 

immediate use in age-dating, and are more easily 

countable by humans because there are many fewer of 

them than sub-km ones. 

 

Small crater statistics are not well understood. This is 

because of various poorly constrained stochastic 

processes that effect both the production and erosion 

of small craters [1]. These small craters reach an 

equilibrium population distribution quickly, and 

therefore many surfaces have a stable number of small 

craters which cannot inform us of the surface age. 

With substantial amounts of data, the processes 

effecting production and erosion may be able to be 

isolated in these equilibrium populations, however a 

very large count of small Martian craters has never 

been conducted. 

 

Figure 1: A flowchart of the algorithm, showing 

feature extraction, classification and clustering. 
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2. Method 

Our algorithm comprises three distinct stages (see 

Figure 1). First, image patches are transformed by a 4-

layer convolutional neural network into a set of 

features. Secondly, these features are used to classify 

the image patch as a crater or non-crater, by a neural 

network. A second neural network is then used on the 

crater candidates to estimate position and size within 

the image. Finally, many detections of the same crater 

in the extended scene are clustered using the mean-

shift algorithm. 

The convolutional network is initially trained in an 

unsupervised fashion, using an autoencoder 

architecture. The training data used is random patches 

of Martian terrain imagery from HRSC nd-4 products. 

After the unsupervised learning, both the 

convolutional network and the neural networks are 

trained using a dataset made available by Cohen et al. 

(link) in the Nanedi Valles region. We extend this 

dataset with additions from different terrain, and use 

data augmentation to increase the number of training 

examples. 

3. Results 

Our algorithm performs at the state-of-the-art when 

compared to other methods [2],[3],[4] using the same 

dataset. We perform with a 91% F1-score in a 

classification scenario, which will improve with more 

training data (Figure 2).  In a detection scenario across 

an extended scene, the algorithm can be used to obtain 

crater candidates for expert marking. In this mode, the 

detection algorithm has a recall at or near to 100% and 

a precision of around 50%. This leads to a huge 

decrease in the time spent manually counting craters, 

given that errors of omission (the most time-

consuming to correct) are negligible. Our detection 

algorithm shows robustness to a variety of terrain 

types, with reliable performance in areas that aren’t 

represented in the training set. Using this tool, we aim 

to produce a large catalogue of small Martian craters, 

which will be used to constrain the effects of 

secondary cratering, erosion rates and partial 

resurfacing. 

 

Figure 2: The classification performance (F1-score) 

of the algorithm, using different amounts of the 

available training set data. This is a clear indication 

that more data will increase performance. 
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